Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35050393

RESUMO

Endocannabinoids are traditionally thought to have an analgesic effect. However, it has been shown that while endocannabinoids can depress nociceptive signaling, they can also enhance non-nociceptive signaling. Therefore, endocannabinoids have the potential to contribute to non-nociceptive sensitization after an injury. Using Hirudo verbana (the medicinal leech), a model of injury-induced sensitization was developed in which a reproducible piercing injury was delivered to the posterior sucker of Hirudo. Injury-induced changes in the non-nociceptive threshold of Hirudo were determined through testing with Von Frey filaments and changes in the response to nociceptive stimuli were tested by measuring the latency to withdraw to a nociceptive thermal stimulus (Hargreaves apparatus). To test the potential role of endocannabinoids in mediating injury-induced sensitization, animals were injected with tetrahydrolipstatin (THL), which inhibits synthesis of the endocannabinoid transmitter 2-arachidonoylglycerol (2-AG). Following injury, a significant decrease in the non-nociceptive response threshold (consistent with non-nociceptive sensitization) and a significant decrease in the response latency to nociceptive stimulation (consistent with nociceptive sensitization) were observed. In animals injected with THL, a decrease in non-nociceptive sensitization in injured animals was observed, but no effect on nociceptive sensitization was observed.


Assuntos
Endocanabinoides , Sanguessugas , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/fisiologia , Endocanabinoides/farmacologia , Endocanabinoides/fisiologia , Sanguessugas/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654741

RESUMO

Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.


Assuntos
Canabinoides/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Peso Corporal , Endocanabinoides/fisiologia , Jejum , Comportamento Alimentar/fisiologia , Teste de Tolerância a Glucose , Glicerídeos/fisiologia , Resistência à Insulina , Camundongos , Obesidade/genética , Receptor Tipo 4 de Melanocortina/agonistas , Ácido gama-Aminobutírico/metabolismo
3.
Cannabis Cannabinoid Res ; 6(3): 233-241, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042520

RESUMO

Background: Patients with rheumatoid arthritis (RA) experience joint swelling and cartilage destruction resulting in chronic pain, functional disability, and compromised joint function. Current RA treatments, including glucocorticoid receptor agonists, produce adverse side effects and lack prolonged treatment efficacy. Cannabinoids (i.e., cannabis-like signaling molecules) exert anti-inflammatory and analgesic effects with limited side effects compared to traditional immunosuppressants, making them excellent targets for the development of new arthritic therapeutics. Monoacylglycerol lipase (MAGL) inhibition reduces inflammation in mouse models of acute inflammation, through cannabinoid receptor dependent and independent pathways. The current study investigated the efficacy of inhibiting synthetic and catabolic enzymes that regulate the endocannabinoid 2-arachidonoylglycerol (2-AG) in blocking paw inflammation, pain-related behaviors, and functional loss caused by collagen-induced arthritis (CIA). Methods: Male DB1A mice subjected to CIA were administered the glucocorticoid agonist dexamethasone (DEX), MAGL inhibitor JZL184 (8 or 40 mg/kg, s.c.), alone or in combination, or diacylglycerol lipase ß (DAGLß) inhibitor KT109 (40 mg/kg, s.c.). CIA-induced deficits were assayed by arthritic clinical scoring, paw thickness measurements, and behavioral tests of pain and paw function. Results: DEX or dual administration with JZL184 reduced paw thickness and clinical scores, and JZL184 dose-dependently attenuated grip strength and balance beam deficits caused by CIA. Traditional measures of pain-induced behaviors (hyperalgesia and allodynia) were inconsistent. The antiarthritic effects of JZL184 (40 mg/kg) were largely blocked by coadministration of the CB2 antagonist SR144528, and the DAGLß inhibitor KT109 had no effect on CIA, indicating that these effects likely occurred through CB2 activation. Conclusions: MAGL inhibition reduced paw inflammation and pain-depressed behavioral signs of arthritis, likely through an endocannabinoid mechanism requiring CB2. These data support the development of MAGL as a target for therapeutic treatment of inflammatory arthritis.


Assuntos
Ácidos Araquidônicos/fisiologia , Artrite Experimental/tratamento farmacológico , Benzodioxóis/farmacologia , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Inflamação/tratamento farmacológico , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Dexametasona/farmacologia , Edema/tratamento farmacológico , , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos DBA
4.
Cannabis Cannabinoid Res ; 6(1): 48-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614952

RESUMO

Introduction: Treatment of traumatic brain injury (TBI) with granulocyte colony-stimulating factor (G-CSF) has been shown to enhance brain repair by direct neurotrophic actions on neural cells and by modulating the inflammatory response. Administration of cannabinoids after TBI has also been reported to enhance brain repair by similar mechanisms. Objectives: The primary objective of this study was to test the hypothesis that G-CSF mediates brain repair by interacting with the endocannabinoid system. Methods and Results: (i) Mice that underwent controlled cortical impact (CCI) were treated with G-CSF for 3 days either alone or in the presence of selective cannabinoid receptor 1 (CB1-R) or cannabinoid receptor 2 (CB2-R) agonists and antagonists. The trauma resulted in decreased expression of CB1-R and increased expression of CB2-R in the cortex, striatum, and hippocampus. Cortical and striatal levels of the major endocannabinoid ligand, 2-arachidonoyl-glycerol, were also increased by the CCI. Administration of the hematopoietic cytokine, G-CSF, following TBI, resulted in mitigation or reversal of trauma-induced CB1-R downregulation and CB2-R upregulation in the three brain regions. Treatment with CB1-R agonist (WIN55) or CB2-R agonist (HU308) mimicked the effects of G-CSF. (ii) Pharmacological blockade of CB1-R or CB2-R was not effective in preventing G-CSF's mitigation or reversal of trauma-induced alterations in these receptors. Conclusions: These results suggest that cellular and molecular mechanisms that mediate subacute effects of G-CSF do not depend on activation of CB1 or CB2 receptors. Failure of selective CB receptor antagonists to prevent the effects of G-CSF in this model has to be accepted with caution. CB receptor antagonists can interact with other CB and non-CB receptors. Investigation of the role of CB receptors in this TBI model will require studies with CB1-R and in CB2-R knockout mice to avoid nonspecific interaction of CB receptor agents with other receptors.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/fisiologia , Lesões Encefálicas Traumáticas/etiologia , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/uso terapêutico , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Endocanabinoides/fisiologia , Glicerídeos/metabolismo , Glicerídeos/fisiologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/genética , Transdução de Sinais/efeitos dos fármacos
5.
Behav Brain Res ; 392: 112712, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32479851

RESUMO

The influence of parental support on child pain experiences is well recognised. Accordingly, animal studies have revealed both short- and long-term effects of early life stress on nociceptive responding and neural substrates such as endocannabinoids. The endocannabinoid system plays an important role in mediating and modulating stress, social interaction, and nociception. This study examined the effects of maternal support or acute isolation on nociceptive responding of female rats to a range of stimuli during the juvenile pre-adolescent period and accompanying changes in the endocannabinoid system. The data revealed that juvenile female Sprague Dawley rats (PND21-24) isolated from the dam for 1 h prior to nociceptive testing exhibited increased latency to withdraw in the hot plate test and increased mechanical withdrawal threshold in the Von Frey test, compared to rats tested in the presence of the dam. Furthermore, isolated rats exhibited reduced latency to respond in the acetone drop test and enhanced nociceptive responding in the formalin test when compared to dam-paired counterparts. Anandamide, but not 2-AG, levels were reduced in the prefrontal cortex of dam-paired, but not isolated, juvenile rats following nociceptive testing. There was no change in the expression of CB1, FAAH or MAGL; however, CB2 receptor expression was reduced in both dam-paired and isolated rats following nociceptive testing. Taken together the data demonstrate that brief social isolation or the presence of the dam modulates nociceptive responding of juvenile rat pups in a modality specific manner, and suggest a possible role for the endocannabinoid system in the prefrontal cortex in sociobehavioural pain responses during early life.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Nociceptores/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/fisiologia , Endocanabinoides/fisiologia , Medo/fisiologia , Feminino , Masculino , Privação Materna , Monoacilglicerol Lipases/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptores/fisiologia , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo
6.
Psychoneuroendocrinology ; 111: 104471, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610409

RESUMO

OBJECTIVE: The endocannabinoid (eCB) system is involved in diverse aspects of human physiology and behavior but little is known about the impact of circadian rhythmicity on the system. The two most studied endocannabinoids, AEA (ananamide) and 2-AG (2-arachidonoylglycerol), can be measured in peripheral blood however the functional relevance of peripheral eCB levels is not clear. Having previously detailed the 24-h profile of serum 2-AG, here we report the 24-h serum profile of AEA to determine if these two endocannabinoids vary in parallel across the biological day including a nocturnal 8.5-h sleep period. Further, we assessed and compared the effect of a physiological challenge, in the form of sleep restriction to 4.5-h, on these two profiles. METHODS: In this randomized crossover study, we examined serum concentrations of AEA across a 24-h period in fourteen young adults. Congeners of AEA, the structural analogs oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were simultaneously assayed. Prior to 24-h blood sampling, each participant was exposed to two nights of normal (8.5 h) or restricted sleep (4.5 h). The two sleep conditions were separated by at least one month. In both sleep conditions, during the period of blood sampling, each individual ate the same high-carbohydrate meal at 0900, 1400, and 1900. RESULTS: Mean 24-h concentrations of AEA were 0.697 ±â€¯0.11 pmol/ml. A reproducible biphasic 24-h profile of AEA was observed with a first peak occurring during early sleep (0200) and a second peak in the mid-afternoon (1500) while a nadir was detected in the mid-morning (1000). The 24-h profiles for both OEA and PEA followed a similar pattern to that observed for AEA. AEA, OEA, and PEA levels were not affected by sleep restriction at any time of day, contrasting with the elevation of early afternoon levels previously observed for 2-AG. CONCLUSIONS: The 24-h rhythm of AEA is markedly different from that of 2-AG, being of lesser amplitude and biphasic, rather than monophasic. These observations suggest distinct regulatory pathways of the two eCB and indicate that time of day needs to be carefully controlled in studies attempting to delineate their relative roles. Moreover, unlike 2-AG, AEA is not altered by sleep restriction, suggesting that physiological perturbations may affect AEA and 2-AG differently. Similar 24-h profiles were observed for OEA and PEA following normal and restricted sleep, further corroborating the validity of the wave-shape and lack of response to sleep loss observed for the AEA profile. Therapeutic approaches involving agonism or antagonism of peripheral eCB signaling will likely need to be tailored according to time of day.


Assuntos
Ácidos Araquidônicos/metabolismo , Ritmo Circadiano/fisiologia , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Adolescente , Adulto , Amidas , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/fisiologia , Estudos Cross-Over , Endocanabinoides/análise , Endocanabinoides/sangue , Endocanabinoides/fisiologia , Etanolaminas/análise , Etanolaminas/sangue , Feminino , Glicerídeos/sangue , Glicerídeos/fisiologia , Humanos , Masculino , Ácidos Oleicos/análise , Ácidos Oleicos/sangue , Ácidos Palmíticos/análise , Ácidos Palmíticos/sangue , Alcamidas Poli-Insaturadas , Sono/fisiologia , Adulto Jovem
7.
Acta Pharmacol Sin ; 40(3): 309-323, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30050084

RESUMO

Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa. Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse. Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse. In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.


Assuntos
Ácidos Araquidônicos/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Endocanabinoides/fisiologia , Amidoidrolases/antagonistas & inibidores , Animais , Comportamento de Procura de Droga/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Alcamidas Poli-Insaturadas , Autoadministração
8.
Neuropsychopharmacology ; 44(8): 1377-1388, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532004

RESUMO

Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.


Assuntos
Ácidos Araquidônicos/fisiologia , Emoções/fisiologia , Endocanabinoides/fisiologia , Etanolaminas/metabolismo , Ácido Glutâmico/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Ácidos Palmíticos/metabolismo , Amidas , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Memória/fisiologia , Camundongos , Neurônios/fisiologia , Ácidos Oleicos , Alcamidas Poli-Insaturadas/metabolismo , Transmissão Sináptica/fisiologia , Regulação para Cima
9.
J Neurosci ; 39(7): 1275-1292, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30573646

RESUMO

Increased anandamide (AEA) signaling through inhibition of its catabolic enzyme fatty acid amide hydrolase (FAAH) in the basolateral complex of amygdala (BLA) is thought to buffer against the effects of stress and reduces behavioral signs of anxiety and fear. However, examining the role of AEA signaling in stress, anxiety, and fear through pharmacological depletion has been challenging due to the redundant complexity of its biosynthesis and the lack of a pharmacological synthesis inhibitor. We developed a herpes simplex viral vector to rapidly yet transiently overexpress FAAH specifically within the BLA to assess the impact of suppressing AEA signaling on stress, fear, and anxiety in male rats. Surprisingly, FAAH overexpression in BLA dampened stress-induced corticosterone release, reduced anxiety-like behaviors, and decreased conditioned fear expression. Interestingly, depleting AEA signaling in the BLA did not prevent fear conditioning itself or fear reinstatement. These effects were specific to the overexpression of FAAH because they were reversed by intra-BLA administration of an FAAH inhibitor. Moreover, the fear-suppressive effects of FAAH overexpression were also mitigated by intra-BLA administration of a low dose of a GABAA receptor antagonist, but not an NMDA/AMPA/kainate receptor antagonist, suggesting that they were mediated by an increase in GABAergic neurotransmission. Our data suggest that a permissive AEA tone within the BLA might gate GABA release and that loss of this tone through elevated AEA hydrolysis increases inhibition in the BLA, which in turn reduces stress, anxiety, and fear. These data provide new insights on the mechanisms by which amygdalar endocannabinoid signaling regulates emotional behavior.SIGNIFICANCE STATEMENT Amygdala endocannabinoid signaling is involved in the regulation of stress, anxiety, and fear. Our data indicate that viral-mediated augmentation of anandamide hydrolysis within the basolateral amygdala reduces behavioral indices of stress, anxiety, and conditioned fear expression. These same effects have been previously documented with inhibition of anandamide hydrolysis in the same brain region. Our results indicate that the ability of anandamide signaling to regulate emotional behavior is nonlinear and may involve actions at distinct neuronal populations, which could be influenced by the basal level of anandamide. Modulation of anandamide signaling is a current clinical therapeutic target for stress-related psychiatric illnesses, so these data underscore the importance of fully understanding the mechanisms by which anandamide signaling regulates amygdala-dependent changes in emotionality.


Assuntos
Ansiedade/psicologia , Ácidos Araquidônicos/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Endocanabinoides/fisiologia , Medo/psicologia , Memória/fisiologia , Estresse Psicológico/psicologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Ácidos Araquidônicos/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/efeitos dos fármacos , Corticosterona/metabolismo , Endocanabinoides/metabolismo , Extinção Psicológica , Medo/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Memória/efeitos dos fármacos , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo
10.
Acta Pharmacol Sin ; 40(3): 336-341, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30002489

RESUMO

Brain endogenous cannabinoid (eCB) signaling seems to harmonize appropriate behavioral responses, which are essential for the organism's long-term viability and homeostasis. Dysregulation of eCB signaling contributes to negative emotional states and increased stress responses. An understanding of the underlying neural cell populations and neural circuit regulation will enable the development of therapeutic strategies to mitigate behavioral maladaptation and provide insight into the influence of eCB on the neural circuits involved in anxiety and depression. This review focuses on recent evidence that has added a new layer of complexity to the idea of targeting the eCB system for therapeutic benefits in neuropsychiatric disease and on the future research direction of neural circuit modulation.


Assuntos
Ansiedade/fisiopatologia , Depressão/fisiopatologia , Endocanabinoides/fisiologia , Transdução de Sinais/fisiologia , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ácidos Araquidônicos/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glicerídeos/fisiologia , Humanos , Alcamidas Poli-Insaturadas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Biochem Pharmacol ; 157: 180-188, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195734

RESUMO

While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and ß (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.


Assuntos
Ácidos Araquidônicos/fisiologia , Movimento Celular , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Corpo Caloso/citologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/biossíntese , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/biossíntese , Glicerídeos/metabolismo , Ratos Wistar
12.
Neurobiol Learn Mem ; 155: 361-370, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196136

RESUMO

Repetitive activation of non-nociceptive afferents is known to attenuate nociceptive signaling. However, the functional details of how this modulatory process operates are not understood and this has been a barrier in using such stimuli to effectively treat chronic pain. The present study tests the hypothesis that the ability of repeated non-nociceptive stimuli to reduce nociception is a form of generalized habituation from the non-nociceptive stimulus-response pathway to the nociceptive pathway. Habituation training, using non-nociceptive mechanosensory stimuli, did reduce responses to nociceptive thermal stimulation. This generalization of habituation to nociceptive stimuli required endocannabinoid-mediated neuromodulation, although disrupting of endocannabinoid signaling did not affect "direct" habituation of to the non-nociceptive stimulus. Surprisingly, the reduced response to nociceptive stimuli following habituation training was very long-lasting (3-8 days). This long-term habituation required endocannabinoid signaling during the training/acquisition phase, but endocannabinoids were not required for post-training retention phase. The implications of these results are that applying principles of habituation learning could potentially improve anti-nociceptive therapies utilizing repeated non-nociceptive stimulation such as transcutaneous nerve stimulation (TENS), spinal cord stimulation (SCS), or electro-acupuncture.


Assuntos
Ácidos Araquidônicos/fisiologia , Endocanabinoides/fisiologia , Generalização Psicológica/fisiologia , Glicerídeos/fisiologia , Habituação Psicofisiológica/fisiologia , Nociceptividade/fisiologia , Anilidas/administração & dosagem , Animais , Cinamatos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Sanguessugas , Orlistate/administração & dosagem , Estimulação Física , Canal de Cátion TRPA1/fisiologia
13.
Toxicol Lett ; 290: 116-122, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551592

RESUMO

CONTEXT: Arsenic poisoning commonly occurs through exposure to water contaminated with arsenic and causes long-term symptoms. Of all the arsenic derivatives, arsenite is the one of the most toxic compounds. However, the toxicity of arsenite during developmental stages is still unclear. OBJECTIVE: In this study, we performed a metabolomic analysis of arsenite responses in embryonic zebrafish. MATERIALS AND METHODS: Embryonic zebrafish were used as an animal model in this study. They were exposed to sodium arsenite under different concentrations (0.5, 1.0, 2.0, and 5.0 mg/L) in 24 h, 48 h and 72 h post fertilization. Changes in morphology were observed through a light microscope. Changes in metabolomics were identified using an ultraperformance liquid chromatography quadrupole time-of-flight system. RESULTS: The IC50 range was 0.75 ±â€¯0.25 mg/L. Compared with the control group, the embryonic lethality rate decreased to 33.3% under 1.0 mg/L of arsenite treatment, whereas it decreased to 20.0% under 2.0 mg/L of arsenite treatment. Numerous body axis curvatures were also observed under treatment with 2.0 and 5.0 mg/L of arsenic. Pericardium and yolk sac edema were randomly discovered and found to worsen over time. Moreover, the 10 metabolites with the highest variable importance in projection score were identified as potential biomarkers for arsenic exposure. CONCLUSION: Arsenic exposure not only leads to a change in the morphology of embryonic zebrafish but also disturbs the metabolism of zebrafish in early developmental stages.


Assuntos
Arsenitos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Metabolômica , Peixe-Zebra/embriologia , Animais , Ácidos Araquidônicos/fisiologia , Biomarcadores , Relação Dose-Resposta a Droga , Embrião não Mamífero/metabolismo , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Curva ROC
14.
ACS Chem Neurosci ; 9(9): 2146-2161, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400439

RESUMO

The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.


Assuntos
Encéfalo/metabolismo , Endocanabinoides/metabolismo , Plasticidade Neuronal , Receptores de Canabinoides/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/fisiologia , Comportamento Aditivo/metabolismo , Comportamento Aditivo/fisiopatologia , Encéfalo/fisiologia , Cerebelo/metabolismo , Cerebelo/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Condicionamento Psicológico/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Endocanabinoides/fisiologia , Extinção Psicológica/fisiologia , Medo , Glicerídeos/metabolismo , Glicerídeos/fisiologia , Objetivos , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Vias Neurais , Alcamidas Poli-Insaturadas/metabolismo , Receptores de Canabinoides/fisiologia , Recompensa , Aprendizagem Espacial/fisiologia , Estriado Ventral/metabolismo , Estriado Ventral/fisiologia
15.
Neuropharmacology ; 126: 233-241, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28890367

RESUMO

Our current knowledge of the implications of endocannabinoids in fear and anxiety is largely based on fear conditioning paradigms and approach-avoidance conflicts. Here we establish the ethobehavioral beetle mania task (BMT), which confronts mice with an erratically moving robo-beetle. With the help of this task we demonstrate decreased tolerance yet increased avoidance responses to an approaching beetle in high-anxiety behavior (HAB) and BALBc mice compared to C57BL/6N, CD1 and normal-anxiety behavior (NAB) mice. Also DBA/2N mice showed decreased passive and increased active behavior, but followed the robo-beetle more often than HAB and BALBc mice. Treatment with diazepam (1 mg/kg) increased tolerance without affecting avoidance behavior in HAB mice. Treatment with the MAGL inhibitor JZL184 (8 mg/kg) increased flight behavior, but did not affect tolerance. The FAAH inhibitor URB597 (0.3 mg/kg), however, reduced flight behavior and enhanced tolerance to the robo-beetle. The latter effects were blocked by co-treatment with the CB1 receptor antagonist SR141716A (3 mg/kg), which failed to affect the behavior by itself. Taken together, we validate the BMT as a novel test for studying endocannabinoids beyond traditional paradigms and for assessing active fear responses in mice. Furthermore, we demonstrate panicolytic consequences of pharmacological enhancement of anandamide, but not 2-AG signaling.


Assuntos
Ansiedade/fisiopatologia , Ácidos Araquidônicos/fisiologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Endocanabinoides/fisiologia , Medo/fisiologia , Amidoidrolases/antagonistas & inibidores , Animais , Ansiolíticos/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Carbamatos/administração & dosagem , Diazepam/administração & dosagem , Medo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/administração & dosagem , Alcamidas Poli-Insaturadas , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
16.
J Oleo Sci ; 66(6): 591-599, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515378

RESUMO

Arachidonic acid (AA) plays a pivotal role in the development of edema via its oxidized metabolites derived from cyclooxygenase (COX) and lipoxygenase (LOX), and is recently recognized as an activator of TRPV3. However, it is not clear whether AA plays some TRPV3-mediated pathological roles in the development of edema. Pharmacological and histological studies using ICRTRPV3+/+ and ICRTRPV3-/- mice indicated that higher ear edema responses to topical application of AA were observed in ICRTRPV3+/+ mice compared with ICRTRPV3-/- mice. However, there was no difference in the ear edema response to 12-O-tetradecanoylphorbol 13-acetate, skin histology, and skin barrier function between these mouse strains. Furthermore, oxidized fatty acids from the lesional site were analyzed to elucidate the TRPV3-mediated pathological roles of AA, and the results revealed that there were no differences in the level of COX or LOX metabolites derived from AA between both mouse strains. We concluded that AA plays a role in the development of TRPV3-mediated ear edema and that this result may contribute to better understanding of the pathophysiological mechanisms involved in the development of a certain type of edema.


Assuntos
Ácidos Araquidônicos/efeitos adversos , Ácidos Araquidônicos/fisiologia , Otopatias/etiologia , Edema/etiologia , Canais de Cátion TRPV/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Feminino , Lipoxigenase/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Prostaglandina-Endoperóxido Sintases/fisiologia , Canais de Cátion TRPV/metabolismo
17.
Neuron ; 93(6): 1375-1387.e2, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28262417

RESUMO

The major endocannabinoid in the mammalian brain is the bioactive lipid 2-arachidonoylglycerol (2-AG). The best-known effects of 2-AG are mediated by G-protein-coupled cannabinoid receptors. In principle, 2-AG could modify neuronal excitability by acting directly on ion channels, but such mechanisms are poorly understood. Using a preparation of dissociated mouse midbrain dopamine neurons to isolate effects on intrinsic excitability, we found that 100 nM 2-AG accelerated pacemaking and steepened the frequency-current relationship for burst-like firing. In voltage-clamp experiments, 2-AG reduced A-type potassium current (IA) through a cannabinoid receptor-independent mechanism mimicked by arachidonic acid, which has no activity on cannabinoid receptors. Activation of orexin, neurotensin, and metabotropic glutamate Gq/11-linked receptors mimicked the effects of exogenous 2-AG and their actions were prevented by inhibiting the 2-AG-synthesizing enzyme diacylglycerol lipase α. The results show that 2-AG and related lipid signaling molecules can directly tune neuronal excitability in a cell-autonomous manner by modulating IA.


Assuntos
Potenciais de Ação/fisiologia , Ácidos Araquidônicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Potenciais da Membrana/fisiologia , Mesencéfalo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ácido Araquidônico/farmacologia , Ácidos Araquidônicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Endocanabinoides/farmacologia , Feminino , Glicerídeos/farmacologia , Lipase Lipoproteica/antagonistas & inibidores , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Receptores de Orexina/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Neurotensina/agonistas
18.
Med Hypotheses ; 93: 161-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27372879

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disease involving oxidative stress, neuroinflammation and apoptosis. Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites and they play a role in cytoprotection by modulating various cell signaling pathways. This cytoprotective role of EETs are well established in cerebral stroke, cardiac failure, and hypertension, and it is due to their ability to attenuate oxidative stress, endoplasmic reticulum stress, inflammation, caspase activation and apoptosis. The actions of EETs in brain closely parallel the effects which is observed in the peripheral tissues. Since many of these effects could potentially contribute to neuroprotection, EETs are, therefore, one of the potential therapeutic candidates in PD. Therefore, by increasing the half life of endogenous EETs in vivo via inhibition of sEH, its metabolizing enzyme can, therefore, constitutes an important therapeutic strategy in PD.


Assuntos
Ácidos Araquidônicos/fisiologia , Inflamação/metabolismo , Neuroproteção , Estresse Oxidativo , Doença de Parkinson/metabolismo , Animais , Apoptose , Ácido Araquidônico/química , Citoproteção , Neurônios Dopaminérgicos/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Hipertensão/metabolismo , Camundongos , Modelos Teóricos , Transdução de Sinais , Solubilidade
19.
Invest Ophthalmol Vis Sci ; 57(7): 3287-96, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27333182

RESUMO

PURPOSE: Cannabinoids, such as Δ9-THC, act through an endogenous signaling system in the vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2-arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic potential of harnessing eCBs to lower IOP. METHODS: We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal cord of MAGL knockout (MAGL-/-) mice using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of MAGL in the mouse anterior chamber. RESULTS: 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary epithelium. The MAGL blocker KML29, but not JZL184, lowered IOP. The ability of CB1 to lower IOP is not desensitized in MAGL-/- mice. Ocular monoacylglycerols, including 2-AG, are elevated in MAGL-/- mice but, in contrast to the spinal cord, arachidonic acid and prostaglandins are not changed. CONCLUSIONS: Our data confirm a central role for MAGL in metabolism of ocular 2-AG and related lipid species, and that endogenous 2-AG can be harnessed to reduce IOP. The MAGL blocker KML29 has promise as a therapeutic agent, while JZL184 may have difficulty crossing the cornea. These data, combined with the relative specificity of MAGL for ocular monoacylglycerols and the lack of desensitization in MAGL-/- mice, suggest that the development of an optimized MAGL blocker offers therapeutic potential for treatment of elevated IOP.


Assuntos
Ácidos Araquidônicos/fisiologia , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Pressão Intraocular/fisiologia , Monoacilglicerol Lipases/fisiologia , Administração Tópica , Animais , Câmara Anterior/metabolismo , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Benzodioxóis , Corpo Ciliar/metabolismo , Córnea/metabolismo , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Glicerídeos/farmacologia , Imuno-Histoquímica , Pressão Intraocular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Piperidinas , Coelhos , Espectrometria de Massas em Tandem
20.
Gastroenterology ; 151(2): 252-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133395

RESUMO

The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.


Assuntos
Encéfalo/fisiologia , Endocanabinoides/fisiologia , Motilidade Gastrointestinal/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Ácidos Araquidônicos/fisiologia , Glicerídeos/fisiologia , Homeostase/fisiologia , Humanos , Alcamidas Poli-Insaturadas , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Transdução de Sinais , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...